
Blog HOME CONTACT

Simple Hindley-Milner in Practice

Posted on May 29, 2025

📄 Download as PDF

Part 1 - Introduction

Structure of this Document

Conventions

Scope

Why LISP?

Quick Lisp Primer

Part 2 - Type Systems

Hindley-Milner Type System

The Type Checker

Unification

🧩 Longer unification Example

Generalisation

Instantiation

🧩 Longer Generalisation Example

Infinite Types

Summary

Part 3 - Introduction to the Code

Implementation Overview

Compiler High Level Flow

Code Conventions

Monad-Transformers

Part 4 - Code Walk-Through

Parser

Errors

Resolver

Type Checker

Type Check: If Expression

Type Check: Do Expression

Type Check: Lists

Non-empty Lists

Empty Lists

Type Checking: Progress So Far

Generating Fresh Type Variables

Occurs Check - Preventing Infinite Types

The Substitution Map

Binding Type Variables - Updating the Substitution Map

Finding Free Type Variables

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 1/44

file:///home/andre/_data/blogSite/hakyll/_site/
file:///home/andre/_data/blogSite/hakyll/_site/
file:///home/andre/_data/blogSite/hakyll/_site/contact.html
file:///home/andre/_data/blogSite/hakyll/_site/posts/PDF_URL

Instantiating Polymorphic Types

Type Checking: Another Progress Check

Generalise

Unification

🧩 Type Check: Define Expression

🧩 Type Check: Function Call

🧩 Type Check: Let Expression

🧩 Type Check: Lambda Expression

🧩 Type Check: Atom Expression

Limitations & Future Work

Quick Wins

Advanced Features

Type Checking: Summary

Lowering

Evaluating

Interaction with the external world

Primitive Functions

Standard Library

REPL

Startup

REPL Features

Commands

Multi-Line Mode

Known Types with :ts
REPL Example

Types at Runtime?

Conclusion

Further Reading

Part 1 - Introduction

In this post, you’ll learn how to build a lightweight Hindley–Milner type checker in Haskell. No

advanced theory is required. We’ll apply it to a tiny, LISP-inspired language so you can focus on how

inference works.

Hindley-Milner inference may seem intimidating, but I believe that it is much more approachable

than it first appears. Each concept is quite understandable. It is just a matter of working through

them and building up to the full picture.

Hopefully, you’ll find this post useful if you want to implement a type system of your own, or if you

wish to understand how Hindley-Milner works.

Structure of this Document

This document is structured as follows:

1. Part 1: Introduction and overview.

2. Part 2: Hindley-Milner type system introduction.

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 2/44

3. Part 3: Introduction to the code.

4. Part 4: Code walk-through.

5. Conclusion.

The code is available on GitHub.

Conventions

📝 is used to introduce a new term or concept.

💡 introduces a tip or reminder.

🧩 starts a block that goes into more detail about a specific topic.

Scope

The explanation and code focus on a practical introduction to the Hindley-Milner type system. This is

not meant to be production grade, no consideration given to performance or optimisations for real-

world languages.

This post is about implementing a Hindley-Milner type system in Haskell, not about LISP itself. Many

of the features that make LISP interesting are not implemented or discussed in this context. It is

just the S-Expression syntax being used.

I believe that it’s often easier to start with a lightweight practical approach, and then decide whether

you want to dive into the theory. I hope that this post will give you enough of a practical

understanding of Hindley-Milner type systems that you can then go on to learn more about the

theory if you want to.

It should demonstrate that implementing the basics for a small DSL is entirely possible, and not as

hard as it may seem at first glance.

Why LISP?

I’m using a LISP-like language because it is a small language. Using a small subset of LISP means

that we can focus on the type system, rather than language itself.

To keep the language minimal, I’m not implementing many of the features of LISP. There are no

macros, quoting etc.

Despite this simplicity it is still enough to demonstrate how the type system works. It could also be a

starting point for a more complete language if you want to extend it.

If you are interested in seeing a fully-fledged statically typed LISP, take a look at Typed Racket.

For the remainder of this post, I will refer to the language being implemented as “LISP”.

Quick Lisp Primer

LISP has a uniform, minimal syntax:

Code and data are written as parenthesised lists.

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 3/44

https://github.com/andrevdm/hmLispTypeSystem
https://docs.racket-lang.org/ts-guide/

Prefix notation is used: (func arg1 arg2 ...) .

Functions are first-class values.

(+ 10 12) results in 22 .

(prn "Hello, World!")
same as print("Hello, World!") in Python

or putStrLn "Hello, World!" in Haskell

There are many good resources to learn LISP, so I won’t go into more detail here.

⚠️ You do not need to learn LISP to understand this post. The basic concepts of LISP are simple

and can be grasped quickly from the context of the code examples.

Part 2 - Type Systems

If you are reading this, you are probably already familiar with types and why you might want them,

so I won’t cover that here. Instead, we’ll dive straight into how Hindley–Milner inference works.

In short, for the LISP being implemented, we want to ensure that user code is well-typed.

(+ 10 12) is well-typed.

(+ 10 "Hello") is not.

> (+ 10 "Hello")

Type Error: Unification mismatch

expected: Int, but found: String.

 1: (+ 10 "Hello")

 ^

 |

 +----------

You may find that switching between the theory (Part 2) and the code (Part 3) helps you understand

the concepts better.

Hindley-Milner Type System

From Wikipedia:

A classical type system for the lambda calculus with parametric polymorphism. It

deduces types automatically across entire modules, not just local expressions, making

it the backbone of ML-style languages. - Wikipedia

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 4/44

https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system

The Type Checker

The type checker being discussed here implements the Hindley-Milner type inference algorithm.

What Hindley-Milner Gives You:

Type inference – no annotations needed (but supported).

Unification – the workhorse that solves equality between types.

Let-generalisation – automatic polymorphism from monomorphic type bindings.

Principal types – you get the most general type, so your functions remain reusable.

Unification

📝 Unification is the algorithm that, given two type expressions,

1. Determines whether they can be made equal

2. And if so, constructs the most general substitution for type variables that makes the

expressions identical.

For example, calling increment on an integer:

Suppose inc is a function with type Int -> Int .

When you write (inc 1) :

1. The type checker sees that inc expects an argument of type Int .

2. It sees that 1 is of type Int .

3. It tries to unify the argument type of inc (Int) with the type of 1 (Int).

4. Since both are Int , the unification succeeds, and the expression type checks.

Calling increment on a string:

If you try (inc "hello")
1. The checker sees that inc expects Int .

2. It sees "hello" is a String .

3. Unification of Int with String fails.

4. A type error is reported.

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 5/44

Valid Application

inc

Int → Int
1

Int

Unification ✅

Type Error

inc

Int → Int

"hello"

String

Unification ❌ (Type error)

📝 A type variable is a placeholder that stands for any type. E.g. a or U0 .

📝 A substitution map tracks which type variables should be replaced by other types or

variables, enabling recursive resolution to the final, most specific type during type inference.

The substitution map maps a type variable name (like U0 , U1) to another type variable or

concrete type.

This can be type variable to type e.g. U0 -> Int , or one type variable to another, e.g. U1 -
> U0 .

During unification, the algorithm uses the substitution map to replace type variables with their

mapped types. (recursively resolving chains like U1 -> U0 -> Int).

Lookup U1 => U0
Lookup U0 => Int
Result: Int

⚠️ The code will prevent infinite types by checking that a type variable never appears within the

structure it’s being unified with. See Infinite Types for more details.

🧩 Longer unification Example

(concat3 () () (list 1))

Assume concat3 is concat3 :: [a] -> [a] -> [a] -> [a] .

That is, it takes three lists of the same type and returns a concatenated list of that type.

(list 1) : list creates a list, so this function creates a list containing the integer 1
In this LISP implementation, lists are homogeneous, meaning all elements must be of the

same type.

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 6/44

(concat3

 () ; arg1

 () ; arg2

 (list 1) ; arg3

)

Type checking:

1. arg1: () :: [U1]
The first () is inferred as an empty list with element type U1 i.e. type [U1] , where U1
is a fresh type variable.

2. arg2: () :: [U2]
The second () is also inferred as an empty list of type [U2] , where U2 is a another

fresh type variable.

3. arg3: (list 1) :: [Int]
arg3: The third argument (list 1) is type-checked and inferred as a list of Int ,

i.e. [Int] .

💡 A fresh type variable is a new unique type variable that has not been used before in the

current type environment.

(concat3

 () ; :: [U1]

 () ; :: [U2]

 (list 1) ; :: [Int]

)

Unification:

1. Homogeneous list

All the arguments must be of the same type, so we need to unify U1 , U2 , and Int .

2. Unify U1 ~ U2
This gives us U1 = U2 because the types match structurally (They are both fresh type

variables and can unify with any type).

3. U1 ~ Int
Next unify U1 with Int , yielding U1 = Int .

Because U2 was already equated to U1 , it too becomes Int (through hierarchical

lookup).

4. Unify with the function type

concat3 has type [a] -> [a] -> [a] -> [a] .

Unify each argument’s inferred type ([U1] , [U2] , [Int]) with [a] , which after

substitution becomes [Int] for all three.

In other words, solve [a] ~ [U1], [a] ~ [U2], [a] ~ [Int]
After applying our substitutions (U1 = Int , U2 = Int)

the signature specializes to [Int] -> [Int] -> [Int] -> [Int] .

Everything matches

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 7/44

(concat3 ; :: [Int] -> [Int] -> [Int] -> [Int]

 () ; :: [Int]

 () ; :: [Int]

 (list 1) ; :: [Int]

) ; :: [Int]

✅ And so the unification and type checking succeeds, resulting in the final type of the expression

being [Int] .

Generalisation

📝 Generalisation in Hindley-Milner, is the process of turning a monomorphic type into a

polymorphic type (forall type) by quantifying its free type variables when binding a value with

let.

📝 The principal type is sometimes informally called the final inferred type, but technically it

refers to the most general type from which all others can be derived by substitution.

Generalisation is the key to Hindley-Milner’s polymorphism. The type system can determine when a

type can be made polymorphic.

If you write a function like (λ (x) x)

In the unification step, the type checker will infer this to have the type U0 -> U0 , where

U0 is a fresh type variable.

Generalisation will then turn this into a polymorphic type ∀ U0. U0 -> U0 , meaning it can

work with any type.

The forall quantifier ∀ U0 indicates that U0 can be any type, making the function

polymorphic.

Even though the example is trivial, this mechanism underlies powerful polymorphism in real-world

languages like ML and Haskell.

In our checker, we generalise at let-bindings and top-level defines.

💡 It may seem as though U0 -> U0 should “obviously” be polymorphic. But the type system

initially treats U0 -> U0 as a monotype. Meaning U0 is a single unknown type, not a stand-

in for any type.

Type inference starts with monotypes by default, because the type checker doesn’t yet know

which type variables are local to the expression and which ones can be safely generalised.

This is the safest default: assume nothing is polymorphic until proven otherwise.

And it is why generalisation only happens at let (and define) bindings. It is the point where

the type checker can safely say that a value is fully known and can be reused.

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 8/44

Instantiation

📝 Instantiation: Replaces all quantified variables in a polymorphic type with fresh type

variables.

📝 Instantiation always produces a monotype.

It operates on a polymorphic type (i.e., one with a forall quantifier) and replaces each

quantified variable with a fresh type variable.

For example, the polytype ∀ a b. a -> b -> String is instantiated to the monotype U0 -
> U1 -> String , where U0 and U1 are fresh type variables.

This ensures that each use of a polymorphic value is independent in type inference.

Two type variables cannot be assumed equal just because they share a name in different

contexts.

Instantiation guarantees that each use of a polymorphic value has its own fresh type variables,

preventing unwanted constraints from leaking between uses.

📝 We instantiate every polymorphic type at every variable use. For example, when you refer

to a top‐level identity function or a let‐bound polymorphic value.

Hindley-Milner’s power comes from its simple, elegant structure. Infer monotypes, generalise at let-

bindings, instantiate at use.

🧩 Longer Generalisation Example

(let ((identity (λ (z) z)))

 (let ((x

 (identity 10))

 (y

 (identity "Hello"))

)

 (prn y)

)

)

Without generalisation, a single monomorphic binding of identity would lock its type to the first use.

This would make the second call fail.

Here is a look at how generalisation solves this problem.

We have a nested let expression.

The outer let binds an identity function.

The inner let binds two variables x and y , both using the identity function.

Using what we know from the previous section, we can infer the types step by step.

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 9/44

(let ((identity (λ (z) z))) ; identity :: U0 -> U0

 (let ((x

 (identity 10)) ; 10 :: Int, identity :: Int -> Int

 (y

 (identity "Hello")) ; "Hello" :: String, ...

)

 (prn y)

)

)

❌ While unifying x the type checker sees that identity must be Int -> Int because

10 is an Int .

❌ When checking (identity "Hello") , unification attempts Int ~ String and fails.

That is not going to work. This is exactly what generalisation is for.

Instead:

(let ((identity (λ (z) z))) ; identity :: ∀ U0. U0 -> U0
 (let ((x

 (identity 10)) ; 10 :: Int, identity :: Int -> Int

 (y

 (identity "Hello")) ; "Hello" :: String, identity :: String -> Str

)

 (prn y)

)

)

✅ The type checker generalises identity to ∀ U0. U0 -> U0 .

✅ Now identity can be used with any type, so it can be applied to both 10 and "Hello"
without issue.

Infinite Types

📝 Infinite types are types that are defined in terms of themselves, leading to recursive type

definitions that cannot be resolved.

The Hindley–Milner type checker detects infinite types, using the occurs check and rejects them.

Without an occurs check, you could write nonsensical types that make no sense (lead to infinite

recursion).

For example:

(let ((x (list x)))

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 10/44

 x)

1. Infer: In (list x) , if x :: U0 , then list x :: [U0] .

2. Unify: Attempt to solve U0 = [U0] .

3. Detect: Because U0 occurs within [U0] , unification would recurse indefinitely.

Summary

So far you have seen what to expect from a Hindley-Milner type system, and you’ve been introduced

to

Unification.

The substitution map.

Generalisation.

Instantiation.

Infinite types and the occurs check.

Part 3 - Introduction to the Code

With an introduction to the theory handled, let’s look at the code to implement the type system in

Haskell.

Implementation Overview

As a reminder, here is what this LISP implementation handles:

Data types: Int , Bool , String , nil , and lists of these types.

A small set of special forms: lambda , let , define , if , function application .

A small set of primitive functions like + , - , * , and , or , etc.

A tiny standard library.

let for defining local variables.

define for defining global variables and functions.

Compiler High Level Flow

The LISP implementation is quite shallow as discussed, but I’ve also tried to keep it relatively broad.

It could have been only a parser, the type checker and a REPL. This would miss some interesting

parts of actually implementing a type system, so I’ve implemented a few more real-world aspects of

the pipeline.

Instead, it looks like this:

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 11/44

https://github.com/andrevdm/hmLispTypeSystem

1. Parsing: LispParser.hs

Converts source code into a simple Abstract Syntax Tree (AST).

No special form recognition. Just simple s-expressions

2. Resolver: Resolver.hs

Recognizes special forms

Create a more structured AST.

3. Type Checking: TypeChecker.hs

Implements the Hindley-Milner type inference algorithm.

Handles unification, generalisation, and instantiation.

Type checks the resolved AST.

Produces a typed AST with type annotations.

4. Lowering: Eval/Lower.hs

Converts the typed AST into a lower-level representation.

In this implementation, its effectively just type erasure

5. Evaluation: Eval/Evaluator.hs

Evaluates the lowered AST.

Implements a simple interpreter for the LISP language.

Finally, a REPL (Repl.hs) that ties everything together, allowing you to interactively enter LISP code

and see the results.

In Part 4 I’ll walk through each of these components in more detail, explaining how they work and fit

together.

Code Conventions

I’ve tried to keep the Haskell relatively simple, but what counts as simple is very subjective.

I have a preference for qualified imports, so you’ll see many import xxx as qualified yyy
statements.

I am using a custom prelude (Verset) which I prefer because it also encourages qualified

imports (not surprisingly, as I created it). Switching to protolude or even the standard

prelude should be easy enough.

I’ve used GHC 12.2 but it should work with 9.8 and later.

I’ve tried to add a reasonable amount of code comments. Hopefully you’ll be able to follow the

code without too much trouble.

pass = pure ()
Record fields are made strict using ! .

I’m using overloaded-record-dot syntax, so you can use x.field instead of field x for

record field access.

Rather than using multiple ' (prime) suffixes, I’ll use 1 , 2 , etc. So name1 => name2 =>
name3 instead of name => name' => name'' .

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 12/44

https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/LispParser.hs
https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/Resolver.hs
https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/TypeChecker.hs
https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/Eval/Lower.hs
https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/Eval/Evaluator.hs
https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/Repl.hs

Monad-Transformers

⚠️If you are not familiar with monad transformers, do not let this discourage or distract you.

The type-checker runs in StateT TcState (Except TypeError) . Think of it as mutable state and

early exit in a pure setting. Everything inside is just modify' for state and throwE for errors. You

can safely ignore the plumbing and focus on the core logic.

You could remove the monad transformer entirely, e.g. - Run entirely in IO, use a TVar for state and

throwing actual exceptions for errors. - Then the type signature would look something like IO
(TypeEnv, TypedLispVal) .

Part 4 - Code Walk-Through

Parser

The code for the parser is in LispParser.hs.

data ParsedLispVal

 = PlNil !Pos

 | PlAtom !Pos Text

 | PlInt !Pos Int

 | PlString !Pos Text

 | PlBool !Pos Bool

 | PlList !Pos [ParsedLispVal]

 deriving (Show, Eq)

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 13/44

https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/LispParser.hs

The parser is intentionally minimal. It only generates low-level s-expressions. No form recognition is

done here.

For example, the following LISP code:

(if #t 1 2)

Would be parsed into the following AST (position elided):

PlList (Pos ...) [

 PlAtom (Pos ...) "if",

 PlBool (Pos ...) True,

 PlInt (Pos ...) 1,

 PlInt (Pos ...) 2

]

At this stage, there is no difference between special forms, lists, definitions, or function applications.

That is all handled in the resolver.

There are tradeoffs here. A simple parser is easy to implement and understand. You might keep the

parser simple like this even in a much more complete LISP implementation.

The simpler parser AST may be the homoiconic AST that you’d want the user to see and manipulate

(e.g. for macros). But you might alternatively opt to recognise more forms in the parser itself.

Errors

Even a basic language can benefit from readable error messages. By tagging each ParsedLispVal
with a Pos we can track the exact line and column that the node was parsed from.

getSourcePos from megaparsec makes this easy.

atPos :: LispParser Pos

atPos = do

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 14/44

https://hackage.haskell.org/package/megaparsec

 p <- M.getSourcePos

 pure $ Pos (M.unPos $ M.sourceLine p) (M.unPos $ M.sourceColumn p)

This allows us to report errors nicely since we know the line and column of the node:

 Type Error: Unbound variable `z`

 1: (let

 2: ((x 1)

 3: (y z))

 ^

 |

 +----------

 4: #t)

The various error types (for the parser, resolver, type checker and evaluator) all implement the

LispError type class.

class LispError a where

 showLispError :: a -> (Maybe Pos, Text, Text, Text) -- (position, type, name,

This allows us to format errors in a consistent way, regardless of the exact error type.

The formatting of errors is done in Printer/PrintError.hs using the prettyprinter and

prettyprinter-ansi-terminal libraries.

Resolver

The parser produces raw lists, but we want a structured AST to work with. The resolver walks each

ParsedLispVal and generates structured ResolvedLispVal nodes.

The code for the resolver is in Resolver.hs.

data ResolvedLispVal

 = RlAtom !Pos Text

 | RlBool !Pos Bool

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 15/44

https://hackage.haskell.org/package/prettyprinter
https://hackage.haskell.org/package/prettyprinter-ansi-terminal
https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/Resolver.hs

 | RlDefine !Pos !Text !ResolvedLispVal

 | RlDo !Pos ![ResolvedLispVal]

 | RlFuncCall !Pos !ResolvedLispVal ![ResolvedLispVal]

 | RlIf !Pos !ResolvedLispVal !ResolvedLispVal !ResolvedLispVal

 | RlInt !Pos Int

 | RlLambda !Pos ![(Pos, Text)] ![ResolvedLispVal]

 | RlLet !Pos !L.LetStyle ![((Pos, Text), (Pos, ResolvedLispVal))] ![ResolvedL

 | RlList !Pos [ResolvedLispVal]

 | RlNil !Pos

 | RlString !Pos Text

 deriving (Show, Eq)

The resolver is responsible for creating a more structured AST from the parsed s-expressions.

It recognizes special forms, and converts the parsed s-expressions into AST nodes that are

easier to work with in the type checker and evaluator.

E.g. it is much simpler to work with a RlIf than just a PlList with an if atom and three

arguments that you would then need to check each time.

The main resolver function is resolveImpl , and it looks like this:

resolveImpl :: Bool -> P.ParsedLispVal -> Either ResolverError ResolvedLispVal

resolveImpl isTopLevel lv =

 case lv of

 -- No change

 P.PlNil p -> Right $ RlNil p

 P.PlInt p v -> Right $ RlInt p v

 P.PlString p v -> Right $ RlString p v

 P.PlBool p v -> Right $ RlBool p v

 P.PlAtom p v -> Right $ RlAtom p v

 P.PlList p allVs -> do

 case allVs of

 (h: vs) ->

 case h of

 P.PlAtom _ "let" -> resolveLet p L.LetParallel vs

 P.PlAtom _ "lambda" -> resolveLambda p vs

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 16/44

 P.PlAtom _ "λ" -> resolveLambda p vs

 P.PlAtom _ "if" -> resolveIf p vs

 P.PlAtom _ "define" ->

 if isTopLevel

 then resolveDefine p vs

 else Left . ReResolverError (Just p) $ "define can only be used

 -- (list 1 2 3) => (1 2 3)

 P.PlAtom _ "list" -> do

 vs' <- traverse (resolveImpl False) vs

 Right $ RlList p vs'

 P.PlAtom _ "do" -> do

 vs' <- traverse (resolveImpl False) vs

 Right $ RlDo p vs'

 -- Everything else is a function call

 _ -> do

 f <- resolveImpl False h

 args <- traverse (resolveImpl False) vs

 Right $ RlFuncCall p f args

 [] -> do

 -- Empty list is empty list not nil

 Right $ RlList p []

A few things to note here:

It recognizes the let , lambda , if , define , and do , special forms as well as function

application.

The resolver is recursive, it walks the parsed AST and resolves each node recursively.

We need to track whether we are at the top-level or not, because define can only be used

at the top-level.

Lambda can be written as lambda or λ .

There is no type-checking here.

Unlike many (most?) LISP implementations we don’t substitute nil for empty lists or vice

versa.

Let’s look at resolveDefine to see how that works.

resolveDefine :: Pos -> [P.ParsedLispVal] -> Either ResolverError ResolvedLispV

resolveDefine pos vs' = do

 let err = "expected define in form (define name expr)\n"

 case vs' of

 [name1, val1] -> do

 name2 <- as' asAtom "atom" name1 $ Just (err <> "expected atom for name

 val2 <- resolveImpl False val1

 pure $ RlDefine pos name2 val2

 _ ->

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 17/44

 Left . ReResolverError (Just pos) $ err <> "Invalid number of arguments

asAtom :: P.ParsedLispVal -> Maybe Text

asAtom (P.PlAtom _ a) = Just a

asAtom _ = Nothing

as' :: (P.ParsedLispVal -> Maybe a) -> Text -> P.ParsedLispVal -> Maybe Text ->

as' f n v e' =

 case f v of

 Just v' -> Right v'

 Nothing ->

 let e = maybe "" ("\n" <>) e' in

 Left $ ReResolverError (Just $ P.getPos v) $ "Expected " <> n <> ", but g

The resolve functions are all fairly similar. They need to check the s-expression and see if it matches

the expected form.

The various asXXX functions are used to match the expected type of the node.

The as' function wraps an asXXX call, and converts a mismatch (Nothing) into an error

(ResolverError).

The as' function return an Either type. Using as' means that an error will short-circuit

the resolution and return immediately.

P.nameOf is the nameOf function imported from the LispParser module. It gets a human-

readable name for the node.

let only supports parallel bindings. No sequential or recursive bindings here.

With every ParsedLispVal now a ResolvedLispVal , complete with structure and positions, we’re

ready to feed these into our type checker.

Type Checker

The type checker traverses the ResolvedLispVal tree, threading an environment and substitution

state through unification, generalisation, and instantiation to produce a fully typed AST.

The code for the type checker is in TypeChecker.hs.

data TypedLispVal

 = TvAtom !Pos !L.LispType !Text

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 18/44

https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/TypeChecker.hs

 | TvBool !Pos !Bool

 | TvDefine !Pos !L.PolyType !Text !TypedLispVal

 | TvDo !Pos !L.LispType ![TypedLispVal]

 | TvFuncCall !Pos !L.LispType !TypedLispVal ![TypedLispVal] -- ^ TvFuncCall

 | TvIf !Pos !L.LispType !TypedLispVal !TypedLispVal !TypedLispVal

 | TvInt !Pos !Int

 | TvLambda !Pos !L.LispType ![(Pos, Text)] ![TypedLispVal]

 | TvLet !Pos !L.LispType !L.LetStyle ![(Pos, Text, TypedLispVal)] ![TypedLisp

 | TvList !Pos !L.LispType ![TypedLispVal]

 | TvNil !Pos

 | TvString !Pos !Text

 deriving (Show, Eq)

data TcState = TcState

 { tsTypeVarCounter :: !Int

 , tsSubst :: !(Map Text L.LispType)

 }

TypedLispVal is the type of the AST after type checking. It is very similar to

ResolvedLispVal , just with type information added.

Primitive types like Int , Bool , String , and nil are not annotated with their type, since

this is obvious from their constructor.

TvInt {} is TyInt etc.

The main type checking function is typeCheckVal' in TypeChecker.hs, which looks like this:

typeCheckVal'

 :: TypeEnv

 -> R.ResolvedLispVal

 -> StateT TcState (Except TypeError) (TypeEnv, TypedLispVal)

typeCheckVal' env1 rv = do

It takes an initial type environment and a ResolvedLispVal , and returns a new type environment

and a TypedLispVal on success.

data TypeEnv = TypeEnv

 { teTypes :: !(Map.Map Text L.PolyType)

 , teParent :: !(Maybe TypeEnv)

 }

Here is the top of typeCheckVal'

typeCheckVal'

 :: TypeEnv

 -> R.ResolvedLispVal

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 19/44

https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/TypeChecker.hs

 -> StateT TcState (Except TypeError) (TypeEnv, TypedLispVal)

typeCheckVal' env1 rv = do

 -- Type check

 (envFinal, topT1) <- go

 topFinal <- applyValSubstitutions topT1

 pure (envFinal, topFinal)

 where

 go =

 case rv of

 -- Simple cases, no extra type checking needed

 R.RlNil p -> pure (env1, TvNil p)

 R.RlInt p v -> pure (env1, TvInt p v)

 R.RlString p v -> pure (env1, TvString p v)

 R.RlBool p v -> pure (env1, TvBool p v)

 -- Type check the more complex cases

 R.RlAtom p v -> typeCheckAtom p v

 R.RlDefine p name val -> typeCheckDefine p name val

 R.RlDo p vs -> typeCheckDo p vs

 R.RlFuncCall p f as -> typeCheckFuncCall p f as

 R.RlIf p cond then' else' -> typeCheckIf p cond then' else'

 R.RlLambda p bindings body -> typeCheckLambda p bindings body

 R.RlLet p style bindings body -> typeCheckLet p style bindings body

 R.RlList p vs -> typeCheckList p vs

The functions returns a TypedLispVal i.e. the result of type checking the

ResolvedLispVal .

It also returns the TypeEnv , which is the type environment after type checking. E.g. it is

updated by a (defined ...) form

For the simple cases like TvInt it simply returns the corresponding TypedLispVal

Now, let us look at how those typeCheckXXX calls are implemented.

Type Check: If Expression

 -- (if cond then else)

 typeCheckIf pos cond1 then1 else1 = do

 -- Type check the `condition`, `then`, and `else` expressions.

 (env2, cond2) <- typeCheckVal' env1 cond1

 (env3, then2) <- typeCheckVal' env2 then1

 (env4, else2) <- typeCheckVal' env3 else1

 -- Check that the condition is a boolean.

 unify (L.getPos cond2, getValType cond2) (pos, L.TyBool)

 -- Unify the types of the then and else branches.

 -- I.e. the then and else branches must have the same result type.

 unify (L.getPos then2, getValType then2) (L.getPos else2, getValType else

 -- Get the final type of the body of the if expression.

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 20/44

 let finalType = getValType then2

 pure (env4, TvIf pos finalType cond2 then2 else2)

Looking at that superficially, it is not that complicated.

Type check the condition , then , and else expressions.

Check (unify) that the condition is a boolean.

Check (unify) that the types of the then and else branches are the same. I.e. that the

final expression in each has the same type.

Get that final type and make it the type of the TvIf expression.

The unify function will be discussed in more detail below.

For now:

💡 Unification is the algorithm that, given two type expressions,

1. Determines whether they can be made equal

2. And if so, constructs the most general substitution for type variables that makes the

expressions identical.

unify

 :: (Pos, L.LispType)

 -> (Pos, L.LispType)

 -> StateT TcState (ExceptT TypeError Identity) ()

So for the if expression that was roughly

1. Type-check all the child expressions.

2. Unify child expressions to ensure the meet expectations

3. Get the final type of the expression.

4. Construct the TvIf .

Type Check: Do Expression

 -- (do ...)

 typeCheckDo pos vs = do

 -- Type check all expressions in the do block.

 (env2, vs2) <- foldTypeCheckVals env1 vs

 -- The type of the block is the type of the last expression or nil if emp

 let lastType = case lastMay vs2 of

 Nothing -> L.TyNil

 Just x -> getValType x

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 21/44

 pure (env2, TvDo pos lastType vs2)

TvDo pos lastType vs2

 ^ ^ ^ ^

 | | | +------- typed children

 | | +------------- result type of the block

 | +-------------------- source position

 +------------------------ “do” node

This is very similar to the if expression.

1. Type check child expressions.

2. Get the type of the body (last expression).

3. Construct the TvDo .

Type Check: Lists

 -- (list v...)

 -- Type check a list of values.

 -- In this implementation, lists are always homogeneous (all elements must

 typeCheckList pos vs =

 case vs of

 -- An empty list can have any element type. Create a fresh type variabl

 -- Note that nil and the empty list `()` are not synonymous in this sys

 [] -> do

 u <- nextTypeVar

 pure (env1, TvList pos (L.TyList $ L.TyVar u) [])

 -- Lists at this point are just vectors of values, never function calls

 -- The only requirement is that all elements have the same type.

 (h:t) -> do

 -- Type check the head element to get its type.

 (env2, headVal) <- typeCheckVal' env1 h

 -- Type check the tail elements to get their types.

 (env3, tailVals) <- foldTypeCheckVals env2 t

 let

 -- Type and position of the first element.

 headType = (L.getPos headVal, getValType headVal)

 -- Type and position the tail elements.

 tailTypes = tailVals <&> \v -> (L.getPos v, getValType v)

 -- Unify the type of each tail element with the head element's type,

 -- to ensure all elements in the list have the same type.

 forM_ tailTypes $ \tt -> unify headType tt

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 22/44

 -- If no type mismatch is found, the list is homogeneous.

 pure (env3, TvList pos (L.TyList $ snd headType) (headVal : tailVals)

A bit more happening there, but still nothing too complicated.

Infer before unify.

Unify takes a Pos and a L.LispType , so it can report errors with the position of any type

mismatch.

TvList pos -- the list node

 (TyList $ snd headType) -- type of the homogeneous list

 (headVal : tailVals) -- the typed list elements

💡 Remember that lists are homogeneous in this implementation.

Non-empty Lists

For non-empty lists, the code looks similar to the if expression’s code.

1. Infer the head’s type by checking the first element.

2. Infer each tail element’s type with foldTypeCheckVals .

3. Unify each tail’s type with the head’s to enforce homogeneity.

4. Construct a TvList pos (TyList headType) [headVal …] node.

Empty Lists

When the type checker first sees an empty list it can’t know what the final concrete type will be. So

we say that the empty list can be of any type, i.e. in Haskell we say it has the type [a] . a will be

unified later when the list is used.

As noted in the code, the empty list is not the same as nil in this implementation.

Type Checking: Progress So Far

In the examples above, you will have seen at a high level how some of the LISP forms are type-

checked. You many want to go back and forth between the code and the theory in Part 2 to get a

better feel for what its trying to achieve.

Next we’ll look at some important helper functions before moving on to the core type-checking code.

Generating Fresh Type Variables

💡 A fresh type variable is a new unique type variable that has not been used before in the

current type environment.

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 23/44

From the unification section above, we saw that the type checker needs to be able to generate fresh

type variables. Let look at the implementation of that in the type checker.

The type checker carries its state in TcState

data TcState = TcState

 { tsTypeVarCounter :: !Int

 , tsSubst :: !(Map Text L.LispType)

 }

tsTypeVarCounter is used to generate fresh type variables.

tsSubst is the substitution map.

Generating a fresh type variable is done in the nextTypeVar function, which looks like this:

typeVarPrefix :: Text

typeVarPrefix = "U"

nextTypeVar :: (Monad m) => StateT TcState m Text

nextTypeVar =

 state $ \st ->

 let c' = tsTypeVarCounter st + 1

 name = typeVarPrefix <> show c'

 st' = st { tsTypeVarCounter = c' }

 in (name, st')

It generates a fresh type variable by incrementing the counter and returning a new type variable

name. Since there is only one TcState for the entire type-checking process, this ensures that all

generated type variables are unique.

I’m using U as the prefix for type variables. This is entirely arbitrary as the name will always be

unique thanks to substitution.

Occurs Check - Preventing Infinite Types

💡 Infinite types are types that are defined in terms of themselves, leading to recursive type

definitions that cannot be resolved.

-- | Check if a type variable occurs in a type

-- This is used to prevent infinite types

-- For example, if you this haskell type is infinite: a = [a]

occurs :: Text -> L.LispType -> Bool

occurs name lt =

 case lt of

 L.TyNil -> False

 L.TyInt -> False

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 24/44

 L.TyString -> False

 L.TyBool -> False

 L.TyVar v -> v == name

 L.TyList vs -> occurs name vs

 L.TyFunc fnArgsType1 fnRetType1 ->

 any (occurs name) (fnArgsType1 <> [fnRetType1])

Recursively checks if a type variable already occurs in a type.

From above, we saw that bindVar calls occur before binding. Then throwing an infinite‐type

error if it returns True.

The Substitution Map

💡 A substitution map tracks which type variables should be replaced by other types or

variables, enabling recursive resolution to the final, most specific type during type inference.

After the unification section process binds e.g. U1 = Int and U2 = U1 , we need to walk every

type and replace U2 -> U1 -> Int . The substitution map is where we store the information to

track which type variables have been unified with which types.

The substitution map is stored in the tsSubst of TcState .

The applySubstitutions function and variants are used to apply the substitutions to types and

values.

applySubstitutions :: L.LispType -> StateT TcState (Except TypeError) L.LispT

applySubstitutions lt = do

 case lt of

 L.TyNil -> pure lt

 L.TyInt -> pure lt

 L.TyString -> pure lt

 L.TyBool -> pure lt

 L.TyList lt1 -> do

 lt2 <- applySubstitutions lt1

 pure $ L.TyList lt2

 L.TyFunc targs tret -> do

 targs2 <- traverse applySubstitutions targs

 tret2 <- applySubstitutions tret

 pure $ L.TyFunc targs2 tret2

 L.TyVar v -> do

 st <- get

 case Map.lookup v st.tsSubst of

 Just lt2 -> applySubstitutions lt2

 Nothing -> pure lt

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 25/44

Nil , Int , String , and Bool have no substitutions, so they are returned as is.

For lists, functions and other complex types, it recursively applies substitutions to their

components and child components.

TyVar is the interesting case

Look up the type variable in the substitution map.

If it exists:

apply substitutions to the found type. I.e. recursively apply substitutions to the

type.

This is how we resolved U2 ~ U1 ~ Int above.

If it does not exist in the substitution map, it is returned as is.

Remember that in the recursive case, this means that all available substitutions

have been applied to the type variable.

You can look at the code to see

applyPolyTypeSubstitutions : calls applySubstitutions on child components of

PolyType
applyValSubstitutions : calls applySubstitutions on child components of a

TypedLispVal

Binding Type Variables - Updating the Substitution Map

💡 Binding a type variable means associating a type variable with a specific type, allowing

the type checker to resolve that variable to the bound type during type inference.

Unification is both a lookup and a binding operation.

You’ll see bindVar invoked in the unify function’s TyVar cases. This is where two types unify a

variable to a concrete type (or another variable).

-- | Bind a variable to a type

-- This is done during type unification as part of the type inference process.

bindVar :: Pos -> Text -> L.LispType -> StateT TcState (Except TypeError) ()

bindVar pos name lt

 -- If trying to bind a type variable to itself, do nothing.

 -- E.g. `U1 = U1`

 | getTVarName lt == Just name = pure ()

 -- Prevent infinite types. See `occurs`

 | occurs name lt = lift . throwE $ TcInfiniteType pos name lt

 -- Record the substitution

 -- i.e. record that `name` is now bound to `lt`

 | otherwise = modify' $ \st -> st { tsSubst = Map.insert name lt st.tsSubst }

 where

 getTVarName :: L.LispType -> Maybe Text

 getTVarName (L.TyVar v) = Just v

 getTVarName _ = Nothing

bindVar is used to bind a type variable to a type.

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 26/44

https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/TypeChecker.hs

Check if being a variable to itself.

Check for infinite types using occurs (see above).

Otherwise, it updates the substitution map in TcState using StateT ’s modify' to record

that the type variable is now bound to the type.

Finding Free Type Variables

To generalise a type we quantify variables that are not already in scope. Getting free type variables

in a type and in the environment is the first step.

In the unification process above, it was said:

Generalisation picks the type variables in the inferred type that are not already “in

scope” in the environment

In the code this is done by freeTypeVars and variants.

-- | A free type variable in a type is a type variable that is not bound by a f

-- nor already assigned a meaning in the current environment.

freeTypeVars :: L.LispType -> Set Text

freeTypeVars (L.TyVar v) = Set.singleton v

freeTypeVars (L.TyList t) = freeTypeVars t

freeTypeVars (L.TyFunc args ret) = Set.unions $ freeTypeVars ret : (freeTypeVar

freeTypeVars L.TyNil = Set.empty

freeTypeVars L.TyInt = Set.empty

freeTypeVars L.TyString = Set.empty

freeTypeVars L.TyBool = Set.empty

This uses Set from the containers package to track free type variables.

Unsurprisingly, sets make set logic easy.

Here we use union :: Set a -> Set a -> Set a to combine two sets

And unions :: [Set a] -> Set a to combine multiple sets.

Let’s look at the TyFunc case

freeTypeVars (L.TyFunc args ret) = Set.unions (freeTypeVars ret : (freeTypeVars <$>
args))

freeTypeVars ret - finds the free variables in the return type.

freeTypeVars <$> args - create a list of the free variables from each argument type.

freeTypeVars ret : … - prepends the return type’s free variables to the argument types’

free variables, making a list of sets.

Set.unions ... - combines all those sets into one set, containing all free variables from the

whole function type.

-- | For PtMono, the free variables are just those of the underlying monotype.

-- For PtForall vs t, the free variables are those in t excluding the ones quan

freeTypeVarsInPoly :: L.PolyType -> Set Text

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 27/44

freeTypeVarsInPoly (L.PtMono t) = freeTypeVars t

freeTypeVarsInPoly (L.PtForall vs t) = freeTypeVars t `Set.difference` Set.from

The PtForall case is interesting, as it excludes the type variables that are quantified in the vs
list.

In other words, it finds the free type variables in a polymorphic type, excluding those that are

bound by the forall quantifier.

Finally freeTypeVarsEnv is used to find free type variables in the environment.

-- | traverses the environment hierarchy and accumulates free type variables

freeTypeVarsEnv :: TypeEnv -> Set Text

freeTypeVarsEnv env =

 let

 freeParents = fromMaybe mempty (freeTypeVarsEnv <$> env.teParent)

 freeInThis = freeTypeVarsInPoly <$> (Map.elems env.teTypes)

 in

 Set.unions (freeParents : freeInThis)

To get the free type variables for the whole environment, you:

Collect all free type variables in the parent environment (if there is one).

This is done recursively.

So it will traverse the entire environment hierarchy upwards.

Note that the fmap here (<$>) is mapping over the Maybe type, so it gets a Maybe
(Set Text) and the fromMaybe handles the Nothing case.

Collect all free type variables in the current environment.

Map freeTypeVarsInPoly over each of the values in the environment’s type map.

Take the union of these sets to get all the free type variables in scope.

Note that although Set.unions and recursive environment traversals are fine for small programs,

larger codebases might require caching or a more incremental approach.

Instantiating Polymorphic Types

💡 Instantiating a polymorphic type means replacing each quantified variable in a

polymorphic type with a fresh type variable.

For example

∀ a b. a -> b -> a becomes U0 -> U1 -> U0
Where U0 and U1 are fresh type variables.

Instantiation always produces a monotype.

This must be done recursively so that all nested polymorphic types are instantiated.

It must also be done recursively for monomorphic types. If we supported more complex types, you

could have a monomorphic type that contains polymorphic. (E.g. in Haskell a monomorphic record

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 28/44

with a polymorphic field type).

instantiate :: Pos -> L.PolyType -> StateT TcState (Except TypeError) L.LispTyp

instantiate _pos pt1 = do

 case pt1 of

 L.PtMono lt1 ->

 instantiate' Map.empty lt1

 L.PtForall vars1 lt1 -> do

 isubsts1 <- for vars1 $ \v -> do

 c <- nextTypeVar

 pure (v, c)

 let isubsts2 = Map.fromList isubsts1

 instantiate' isubsts2 lt1

 where

 instantiate' :: Map Text Text -> L.LispType -> StateT TcState (Except TypeE

 instantiate' isubst lt1 = do

 case lt1 of

 L.TyNil -> pure lt1

 L.TyInt -> pure lt1

 L.TyString -> pure lt1

 L.TyBool -> pure lt1

 L.TyList lt2 -> do

 lt3 <- instantiate' isubst lt2

 pure $ L.TyList lt3

 L.TyVar v -> do

 case Map.lookup v isubst of

 Just v2 -> pure $ L.TyVar v2

 Nothing ->

 -- No substitution found, so return the original type variable

 pure $ L.TyVar v

 L.TyFunc targs tret -> do

 targs2 <- traverse (instantiate' isubst) targs

 tret2 <- instantiate' isubst tret

 pure $ L.TyFunc targs2 tret2

Type Checking: Another Progress Check

You have now seen all the building blocks required for us to move on to generalisation and

unify . With all the pieces in place, they should be reasonably understandable.

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 29/44

Generalise

💡 Generalisation in Hindley-Milner, is the process of turning a monomorphic into a

polymorphic type.

generalise :: TypeEnv -> L.LispType -> L.PolyType

generalise env t =

 let

 -- 1. Collect all free type variables appearing in the environment.

 envVars = freeTypeVarsEnv env

 -- 2. Collect all free type variables in the type being generalised.

 typeVars = freeTypeVars t

 -- 3. Find variables that appear in the type, but not in the environment.

 -- These are the variables that can be generalised (quantified over).

 toGen = Set.toList (typeVars `Set.difference` envVars)

 in

 -- 4. If there are no variables to generalise, return a monomorphic type.

 if null toGen

 then L.PtMono t

 else L.PtForall toGen t

The comments in the code explain the steps pretty well.

Paraphrasing from above

Generalisation picks the type variables in the inferred type that are not already “in scope” in

the environment

(free in type) - (free in type environment)

Unification

💡 Unification is the algorithm that, given two type expressions,

1. Determines whether they can be made equal

2. And if so, constructs the most general substitution for type variables that makes the

expressions identical.

Finally, we get to the unification function, which is the core of the type inference algorithm.

unify

 :: (Pos, L.LispType)

 -> (Pos, L.LispType)

 -> StateT TcState (ExceptT TypeError Identity) ()

unify (lhsPos, lhs1) (rhsPos, rhs1) = do

 -- 1) Substitute

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 30/44

 lhs2 <- applySubstitutions lhs1

 rhs2 <- applySubstitutions rhs1

 unify' lhs2 rhs2

 where

 unify' :: L.LispType -> L.LispType -> StateT TcState (Except TypeError) ()

 -- 2) Equal?

 unify' l r | l == r = pure ()

 -- 3) Type variable?

 unify' (L.TyVar name) r = bindVar lhsPos name r

 unify' l (L.TyVar name) = bindVar rhsPos name l

 -- 4) Lists?

 unify' (L.TyList a1) (L.TyList b1) = unify' a1 b1

 -- 5) Functions?

 unify' (L.TyFunc fnArgsType1 fnRetType1) (L.TyFunc fnArgsType2 fnRetType2)

 unless (length fnArgsType1 == length fnArgsType2) $ do

 lift . throwE $ TcArityError (Just $ lhsPos) (length fnArgsType1) (leng

 -- unify the argument types

 zipWithM_ (\a1 a2 -> unify (lhsPos, a1) (rhsPos, a2)) fnArgsType1 fnArgsT

 -- unify the return types

 unify (lhsPos, fnRetType1) (rhsPos, fnRetType2)

 -- 6) Mismatch

 unify' l r = lift . throwE $ TcTypeMismatch "Unification mismatch" lhsPos (

Main steps

1. Apply all substitutions to both types. (see applySubstitutions)

2. If they are equal, do nothing

3. If one is a type variable, bind it to the other type (unless this creates an infinite type)

4. If both are lists, unify their elements

5. If both are functions, unify their argument types and return types

6. Otherwise, throw a type mismatch error

With all the leg work done, the unification algorithm is concise and straightforward.

We can now look at a couple of the more complex cases from typeCheckVal' to see how they use

unification and generalisation.

🧩 Type Check: Define Expression

-- (define name val)

typeCheckDefine pos name val1 = do

 -- Type check the value being defined.

 (_env2, val2) <- typeCheckVal' env1 val1

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 31/44

 -- Apply substitutions before generalising. This gets the final (possibly con

 -- This step resolves all type variables to their current bindings.

 tFinal <- applySubstitutions (getValType val2)

 -- Generalise the type of the value to create a polymorphic type if possible.

 -- See `generalise` for details.

 let pt = generalise env1 tFinal

 -- Update the *current* environment with the new binding.

 -- Note: this does not create a new env layer, it is an in-place update.

 let env3 = env1 { teTypes = Map.insert name pt env1.teTypes }

 pure (env3, TvDefine pos pt name val2)

The resolver already restricted define s to the top-level. No need to check again.

Type-check the value being defined.

Substitute

Generalise. We generalise for define and for let bindings.

In-place environment update with the new binding.

🧩 Type Check: Function Call

To type an application like (+ 1 2) , we infer the function’s type, infer each argument’s type, and

then unify against a fresh type-var return type.

-- (func args...)

-- Type check a function call (application).

-- Note that this is for when a function is called, not when it is defined.

typeCheckFuncCall pos funcVal' args' = do

 -- Type check the function being called and all argument expressions.

 (_, funcVal) <- typeCheckVal' env1 funcVal'

 (_, argVals) <- foldTypeCheckVals env1 args'

 -- Collect the types of all the arguments.

 let argTypes = getValType <$> argVals

 -- Create a fresh type variable for the return type.

 retType <- L.TyVar <$> nextTypeVar

 -- Unify the type of the function value with a function type: (argTypes -> re

 -- This means the value being called must be a function taking the argument t

 -- I.e. the value being called is a function whose type unifies with a functi

 -- types and a fresh return type variable.

 unify (L.getPos funcVal, getValType funcVal) (pos, L.TyFunc argTypes retType)

 -- After unification, apply substitutions to get the final (possibly concrete

 retTypeSubst <- applySubstitutions retType

 pure (env1, TvFuncCall pos retTypeSubst funcVal argVals)

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 32/44

This is for function application, not function definition. E.g. (+ 1 2) .

There are no explicit types, so the return type always starts as a fresh type variable.

unify is called to ensure that the thing being called is a function with the expected

argument types and return type.

Don’t forget to apply substitutions to the return type after unification.

🧩 Type Check: Let Expression

A let introduces local bindings whose definitions may themselves be polymorphic. To support

polymorphism, we must type‐check each binding, generalise its monotype, and put all new ones into

a fresh environment before checking the body.

-- (let ((n1 v1) (n2 v2)...) body...)

typeCheckLet pos style bindings1 body1 = do

 (bindings2', env2') <-

 case style of

 -- Parallel let bindings:

 -- * All bindings are evaluated in the same outer environment.

 -- * No binding can refer to any other binding in the same let.

 -- * Only the body sees all new bindings.

 --

 -- Sequential let bindings, where a binding may refer to a previous bindi

 -- are not supported, but should be easy to add.

 L.LetParallel -> do

 -- Type check each binding in the let form.

 ls <- traverse typeCheckLetBinding bindings1

 let bindings2 = ls <&> \(_, p, name, val) -> (p, name, val)

 -- Generalise the types of the bindings to allow polymorphism.

 bindings3 = bindings2 <&> \(_, name, val) -> (name, generalise env1

 -- Create a new environment layer for the let body, containing the

 env2 = TypeEnv

 { teParent = Just env1

 , teTypes = Map.fromList bindings3

 }

 pure (bindings2, env2)

In LISP, there are several styles of let bindings.

parallel: all bindings are evaluated in the same outer environment.

sequential: bindings are evaluated one after the other, and can refer to previous

bindings.

recursive: bindings are evaluated in the same environment but can refer to each

other.

This implementation only supports parallel let bindings, but it should be easy to add the

others.

Generalise and create a new environment layer for the body of the let expression.

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 33/44

🧩 Type Check: Lambda Expression

To type-check (λ (x y) ...) , we assign each parameter a fresh type variable, extend the

environment with those bindings, type‐check the body, and then assemble a function type from the

parameter and return types.

-- (λ (param1 param2 ...) body..)

typeCheckLambda pos params1 body1 = do

 -- Create new (fresh) monomorphic type variables for each of the parameters.

 params2 <- for params1 $ \(p, name) -> do

 u <- nextTypeVar

 pure (p, name, L.PtMono $ L.TyVar u)

 -- Create a new environment layer for this function.

 -- containing the parameter bindings as local variables.

 let env2 = TypeEnv

 { teParent = Just env1

 , teTypes = Map.fromList $ params2 <&> \(_, name, pt) -> (name, pt)

 }

 -- Type check the lambda body in the new environment.

 (_tenv2, body2) <- foldTypeCheckVals env2 body1

 -- Apply substitutions to each parameter type to resolve any type variables.

 -- Use `getMonoType` to extract the monomorphic type from a PolyType.

 -- This is required here because we only ever bind parameters to monotypes,

 -- so it is safe to extract without ambiguity.

 params3 <- for params2 $ \(_p, _name, pt) ->

 applySubstitutions (getMonoType pt)

 -- Get the return type of the lambda by looking at the last expression in the

 -- Apply substitutions to get the fully resolved type.

 retType <- case lastMay body2 of

 Nothing -> pure L.TyNil

 Just l -> applySubstitutions (getValType l)

 -- Construct the final function type for the lambda.

 let lambdaType = L.TyFunc params3 retType

 pure (env1, TvLambda pos lambdaType params1 body2)

There are no explicit types in the lambda expression, so we create fresh type variables for

each parameter and return type.

A lambda captures its environment, so we create a new environment layer for the lambda

body.

The body is type-checked in this new environment.

Get the return type and apply substitutions to resolve any type variables.

The way that this implementation handles the type environment naturally supports lexical scoping

and variable capture which are the foundations of closures in functional languages.

When type-checking a lambda, we construct a new TypeEnv (env2) that contains just the

lambda’s parameters. teParent = Just env1 then links it to the parent scope. env1 is the

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 34/44

environment at the point where the lambda is defined. That is we return (env1, TvLambda...) ,

not (env2, ...) . The new bindings are scoped only within the lambda body, preserving the outer

environment unmodified.

This mirrors how most functional languages implement closures.

📝 Lambdas capture the environment where they are defined, not where they are called from.

🧩 Type Check: Atom Expression

Atoms are our only form of name lookup. We fetch their polymorphic type from the environment and

instantiate them to fresh monotypes for use.

typeCheckAtom pos v = do

 -- Try to look up the variable in the type environment.

 case tlookup v env1 of

 -- If found, instantiate the value (see `instantiate`).

 Just pt -> do

 lt <- instantiate pos pt

 pure (env1, TvAtom pos lt v)

 -- If not found, throw an unbound type variable error.

 Nothing -> lift . throwE $ TcUnboundVariable pos v

tlookup :: Text -> TypeEnv -> Maybe L.PolyType

tlookup name env =

 case Map.lookup name env.teTypes of

 Just v -> Just v

 Nothing -> case env.teParent of

 Nothing -> Nothing

 Just parent -> tlookup name parent

tlookup is a utility function that looks recursively up a variable in the current type

environment or it’s parents etc.

Instantiate if found otherwise throw an unbound variable error.

Limitations & Future Work

Quick Wins

Type signatures for let and define

Useful for documentation and guiding inference

Would require parsing an extra annotation form and a simple unify call in the resolver.

Sequential let bindings

Evaluate bindings one by one, each seeing previous ones

Easy to implement by threading the environment through each binding in order.

The LetType sum type and case statements are already in place.

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 35/44

Floating point type support

Adds TyDouble
Could be handled either by overloading or numeric promotion.

Advanced Features

Recursive let and mutual recursion

User‐defined algebraic data types

Type classes and constraints

Another way to deal with double vs int .

Performance optimisations

Current substitution and environment operations are naive

Large programs would benefit from incremental or cached substitution and more efficient

environment lookups.

Improved error messages

Type Checking: Summary

In just a few hundred lines, we have built a complete Hindley-Milner pipeline in TypeChecker.hs.

From parser through evaluator for a minimal Lisp.

We support unification, generalisation, instantiation, polymorphic let bindings, and fresh-variable

generation. The code is modular and clear, making it easy to extend.

Lowering

💡 Lowering is the process of transforming a complex AST into a simpler form

Real-world compilers often perform optimisations, desugaring, etc during lowering. In our pipeline,

lowering simply erases all type and position annotations.

Including a lowering phase mirrors a full compiler architecture and sets the stage for REPL features

such as runtime type queries.

Since the AST has already passed every type check, removing annotations cannot introduce

runtime errors.

In GHC, types are erased before code generation, our lowering step follows the same approach.

With annotations removed, the resulting EvalVar nodes become the input to our interpreter (see

the EvalVar type in the Evaluator next section.).

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 36/44

https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/TypeChecker.hs

-- | Lower a typed value to 'EvalVar m'.

-- In this implementation, lowering does little other than type erasure.

-- In a more complex implementation, lowering could also perform optimisations

-- Compling to bytecode or transpiling to another language would typically oper

lowerToEvalVar' :: T.TypedLispVal -> Except E.EvalError (EvalVar m)

lowerToEvalVar' tv = do

 case tv of

 T.TvNil _ -> pure EvNil

 T.TvInt _ v -> pure $ EvInt v

 T.TvBool _ v -> pure $ EvBool v

 T.TvString _ v -> pure $ EvString v

 T.TvAtom _ _ a -> pure $ EvVar a

 T.TvList _ _ vs -> do

 case lowerToEvalVar vs of

 Left err -> throwE err

 Right vs' -> pure $ EvList vs'

 T.TvFuncCall _p _t fv' argvs' -> do

 fv <- lowerToEvalVar' fv'

 argvs <- traverse lowerToEvalVar' argvs'

 pure $ EvFuncCall fv argvs

 T.TvDo _ _ vs -> do

 case lowerToEvalVar vs of

 Left err -> throwE err

 Right vs' -> pure $ EvDo vs'

 T.TvLet _ _ style bindings1 body1 -> do

 bindings2 <- for bindings1 $ \(_, n, v) -> do

 v2 <- lowerToEvalVar' v

 pure (n, v2)

 body2 <-

 case lowerToEvalVar body1 of

 Left err -> throwE err

 Right body' -> pure body'

 pure $ EvLet style bindings2 body2

 T.TvLambda _pos _typ args body1 -> do

 body2 <- traverse lowerToEvalVar' body1

 pure $ EvLambdaForm (snd <$> args) body2

 T.TvIf _pos _typ cond then' else' -> do

 cond2 <- lowerToEvalVar' cond

 then2 <- lowerToEvalVar' then'

 else2 <- lowerToEvalVar' else'

 pure $ EvIf cond2 then2 else2

 T.TvDefine _pos _typ n v -> do

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 37/44

 v2 <- lowerToEvalVar' v

 pure $ EvDefine n v2

Evaluating

Having erased types, our evaluator walks the EvalVar tree, executing primitives and user-defined

functions. We know that the code is well-typed, so we can safely evaluate it without worrying about

type errors.

Here is the lowered AST

data EvalVar m

 = EvBool !Bool

 | EvDefine !Text !(EvalVar m)

 | EvDo ![EvalVar m]

 | EvFuncCall !(EvalVar m) ![(EvalVar m)]

 | EvFunction !(EvFunc m)

 | EvIf !(EvalVar m) !(EvalVar m) !(EvalVar m)

 | EvInt !Int

 | EvLambdaForm ![Text] ![EvalVar m]

 | EvLet L.LetStyle ![(Text, EvalVar m)] ![EvalVar m]

 | EvList ![EvalVar m]

 | EvNil

 | EvString !Text

 | EvVar !Text

 deriving (Eq, Show)

newtype EvFunc m = EvFunc ([EvalVar m] -> EvalEnv m -> ExceptT EvalError m (Eva

This is very similar to TypedLispVal , but without the type information and positions. Unlike

previous types, it is parameterised by a monad m . All the types in the evaluator and the evaluator

itself follow this pattern.

The core evaluator remains pure, all IO is delegated to an EvalIO m record. By abstracting over m,

we can run in IO or swap in a pure test runner.

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 38/44

data EvalEnv m = EvalEnv

 { eeParent :: !(Maybe (EvalEnv m))

 , eeVars :: !(Map Text (EvalVar m))

 } deriving (Eq, Show)

EvFunc is newtype wrapper for a function type. That is a function that can be applied. EvalEnv is

the environment that the function is evaluated in, it contains the variable bindings and other state

needed for evaluation. EvalEnv is hierarchical, i.e. a stack of environments.

Interaction with the external world

The evaluator itself is pure, it has no direct way to perform and side effects. Instead it uses EvalIO
m which provides a way to interact with the external world, assuming m is an IO -like monad.

data EvalIO m = EvalIO

 { eiPrnLn :: !(forall s. (Show s) => s -> m ())

 , eiPrnTextLn :: !(Text -> m ())

 , eiPrnErrorInCode :: !(forall e. (L.LispError e) => Text -> e -> m ())

 , eiLog :: !(Lg.Logger m)

 }

Of course you could also implement EvalIO without using IO e.g. if you wanted to use it from a

pure context.

Primitive Functions

Primitive functions provide built-in operations implemented in Haskell but whose types are checked

in our HM engine.

PrimFns.hs contains the primitive function’s implementation. It is very small and incomplete but

does demonstrate how the host language can provide functions to the LISP language.

E.g.

newtype PrimitiveFunctions m = PrimitiveFunctions (Map Text (EvFunc m, L.PolyTy

getPrimitiveFunctions

 :: forall m.

 (Monad m)

 => E.EvalIO m

 -> m (E.PrimitiveFunctions m)

getPrimitiveFunctions eio = do

 let intIntInt = L.PtMono $ L.TyFunc [L.TyInt, L.TyInt] L.TyInt

 pure . E.PrimitiveFunctions . Map.fromList $

 [("+", (E.EvFunc $ eMathsBin (+), intIntInt))

 , ("-", (E.EvFunc $ eMathsBin (-), intIntInt))

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 39/44

https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/PrimFns.hs

 , ("prn"

 , (E.EvFunc ePrn

 , L.PtMono $ L.TyFunc [L.TyString] L.TyNil

)

)

]

 where

 ePrn :: [E.EvalVar m] -> E.EvalEnv m -> ExceptT E.EvalError m (E.EvalVar m)

 ePrn args _eenv = do

 case args of

 [v] -> do

 s <- E.as' E.asString "string" $ v

 lift . E.eiPrnTextLn eio $ s

 pure E.EvNil

 _ -> do

 throwE . E.EeRuntimeError Nothing $ "prn: wrong number of arguments c

 eMathsBin :: (Int -> Int -> Int) -> [E.EvalVar m] -> E.EvalEnv m -> ExceptT

 eMathsBin op args _eenv = do

 case args of

 [v1, v2] -> do

 i1 <- E.as' E.asInt "int" $ v1

 i2 <- E.as' E.asInt "int" $ v2

 pure . E.EvInt $ op i1 i2

 _ -> do

 throwE . E.EeRuntimeError Nothing $ "Wrong number of arguments callin

getPrimitiveFunctions returns a map of primitive functions and their types. The types are used

during type checking to ensure that the arguments passed to the functions are of the correct type.

The evaluator will get only the EvFunc from the (EvFunc m, L.PolyType) pair for use in

evaluation.

Typically you’d want to have as few primitive functions as possible. Then you’d provide a standard

library of functions written in the target language.

Standard Library

The REPL loads a small LISP standard library at startup.

; identity function

(define identity (λ (x) x))

; create a list with two elements

(define pair (λ (x y) (list x y)))

; square a number

(define square (λ (x) (* x x)))

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 40/44

REPL

The REPL ties together parsing, type checking, lowering, and evaluation into an interactive loop. It is

implemented in Repl.hs using the haskline library for line editing, history, and simple completion

The REPL is not the focus of this post, so I won’t go into too much detail here.

Startup

On launch, the REPL:

Loads stdLib.lisp (the standard library).

Initializes the parser, type checker, evaluator, and environment with primitives.

Enters a loop reading user input.

⚠️ In this prototype, stdLib.lisp must reside in the current directory.

REPL Features

Commands

Expression Evaluation

Typing any valid Lisp expression parses, type-checks, and evaluates it, printing the result.

:t <expr>
Show the inferred type of <expr> after evaluating it.

:ts
List all known top-level names and their types (primitives, library definitions, and user

defines).

+t <expr>
Toggle printing of types after evaluation.

This is on by default, but can be toggled with +t .

:quit or Ctrl-D
Exit the REPL.

+m
Toggle multi-line mode. End a block with a line containing only ..

Multi-Line Mode

When multi-line mode is on, you can enter a block over several lines:

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 41/44

https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/Repl.hs
https://hackage.haskell.org/package/haskeline

> +m

Multiline = on.

>>> (let

... ((x 10)

... (y 20)

...)

... (* x y)

...)

... .

200

Known Types with :ts

:ts shows all known types, which is useful for debugging and understanding the types in the

program.

> :ts

 * (: Int -> Int -> Int)

 + (: Int -> Int -> Int)

 - (: Int -> Int -> Int)

 / (: Int -> Int -> Int)

 < (: Int -> Int -> Bool)

 > (: Int -> Int -> Bool)

 and (: Bool -> Bool -> Bool)

 eq_bool (: Bool -> Bool -> Bool)

 eq_int (: Int -> Int -> Bool)

 eq_string (: String -> String -> Bool)

 identity (∀ [U0] (: U0 -> U0))
 not (: Bool -> Bool)

 or (: Bool -> Bool -> Bool)

 pair (∀ [U2] (: U2 -> U2 -> (List U2)))
 prn (: String -> Nil)

 square (: Int -> Int)

REPL Example

> (define identity (λ (x) x))

> :t identity

identity : ∀ [U0]. U0 -> U0

> (identity 123)

123

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 42/44

> (identity "hello")

"hello"

> (identity (list 1 2 3))

(1 2 3)

> ((λ (x) (+ x x)) 10)

20

Types at Runtime?

Since Lowering erases types from the AST, you might wonder how the REPL is able to show types

(for :t and :ts). The answer is that evaluation returns both a value and a type environment. The

REPL retains this and is then able to display type information even after erasure.

m (Either EvalError (T.TypeEnv, T.TypedLispVal, EvalEnv m, EvalVar m))

The REPL stores (and updates) this in its state

data REnv = REnv

 { ePrintType :: !Bool

 , eEvalEnv :: !(Maybe (E.EvalEnv IO))

 , eEio :: !(E.EvalIO IO)

 , ePrimFns :: !(E.PrimitiveFunctions IO)

 , eTypeEnv :: !(T.TypeEnv) ; <<----------- HERE

 , eMultiLine :: !Bool

 }

This approach separates runtime execution (EvalVar) from type bookkeeping, while still allowing

full type introspection in the interactive REPL.

Conclusion

In this post, we walked through a Hindley–Milner type system implementation in Haskell for a

minimal Lisp.

You saw the core theory of unification, generalisation, instantiation, and principal types.

You also explored a working code pipeline, from parsing and resolution through type checking,

lowering, and evaluation.

A key takeaway is that HM-style inference need not be daunting to implement.

Although minimal, this example provides a solid foundation for further extensions.

I hope you’ve found this walk-through both practical and inspiring.

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 43/44

https://github.com/andrevdm/hmLispTypeSystem/blob/blog/src/Eval/Evaluator.hs

Please feel free to clone the GitHub repo, experiment with the code, and share your improvements

or questions.

Further Reading

The Typed Racket Guide

Typed Racket

Robert Nystrom

Crafting Interpreters

Wikipedia:

Hindley–Milner type system

Jeremy Siek

Crash Course on Notation in Programming Language Theory

Pierce, Benjamin C. (2002). Types and Programming Languages. MIT Press.

Types and Programming Languages

Milner, R. (1978). A theory of type polymorphism in programming.

Journal of Computer and System Sciences, 17(3), 348-375.

Damas, L. & Milner, R. (1982). Principal type-schemes for functional programs.

Principal type-schemes for functional programs

Site generated by Hakyll

5/29/25, 2:34 PM Andre's Blog

file:///home/andre/_data/blogSite/hakyll/_site/posts/2025-05-29-simple-hm-in-practice.html 44/44

https://github.com/andrevdm/hmLispTypeSystem
https://docs.racket-lang.org/ts-guide/
https://craftinginterpreters.com/
https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
https://siek.blogspot.com/2012/07/crash-course-on-notation-in-programming.html
https://www.cis.upenn.edu/~bcpierce/tapl/
https://www.sciencedirect.com/science/article/pii/0022000078900144
https://dl.acm.org/doi/10.1145/582153.582176
http://jaspervdj.be/hakyll

